A.I. IN PRODUCTION

THE ROAD TO PROCESS OPTIMALISATION WITH A.I.

A.I. LAB — PERRON038 6 March 2025

INTRODUCTION

Name: Arend Luten

Age: 42 years Home: Area of Zwolle - NL

Education

Bachelor Software Engineering Zwolle - 2006 Vocational education Electrical Engineering - 2002

Work Experience:

Tembo Kampen NL		2007 - now		
•	A.I. lab Perron038	2023 - now		

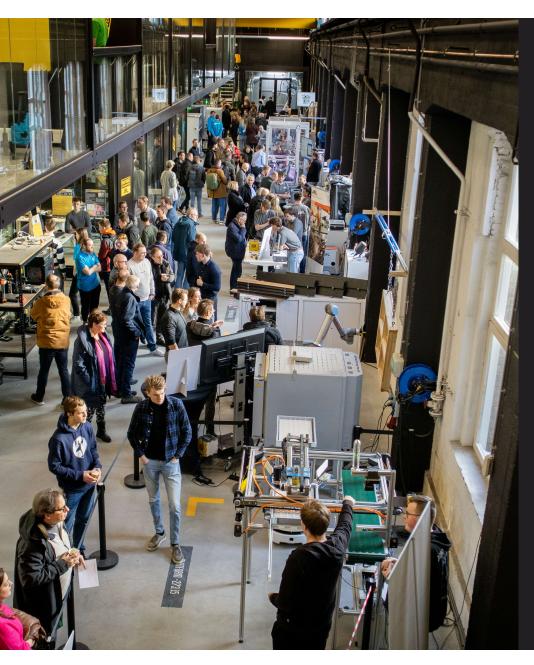
- R&D Innovation lab Perron038 2019 now
- Lead Developer HMI* 2008 now
- Software Developer OEE** 2007 2010

Hobbies:

Keyboard player, Beekeeper, Running, 3D printing

*Human Machine Interface **Overall Equipment Effectivenesss





A.I. IN PRODUCTION

- Introduction Tembo & Perron038
- How can we make a machine smarter?
- Case study: Genesis A.I. Driven quality check
- Case study: Salome
 A.I. Driven Process optimalization
- Conclusion

About our name

Tembo means elephant

It refers to De Olifant, our founding company – an authentic cigar factory located in Kampen, the Netherlands.

Our transformation



Sustainable alternatives

Tembo markets and solutions

Global services technology hubs

Innovation

Digitalisation

Innovation Eco-system

Close collaboration

This means we can access cutting-edge knowledge across a wide range of different technologies, which is a big advantage to help our customers and partners respond immediately to changes in their market.

We collaborate with universities, RTOs, and innovation networks:

FACTORY

Discover | Develop | Deliver

GOAL

Making new technology accessible

- Test before invest
- Incidental use

METHOD

- Gaining new knowledge and developments (events, academy)
- Prototyping
- Joint project
- Self-development or research

FACTORY NEXT

Digital Manufacturing

Robotics & Logistics

Vision & Optics

Artificial Intelligence

Additive Manufacturing

HOW CAN WE MAKE A MACHINE SMARTER?

HOW CAN WE MAKE A MACHINE SMARTER?

Introduction

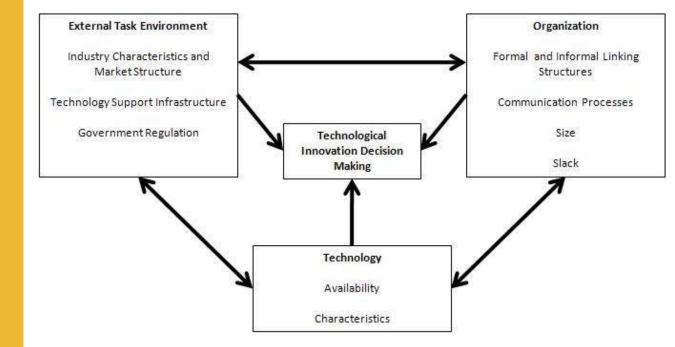
- Understand technology innovation via TOE-framework
- What can A.I. do in the industry?
- Process to integrate A.I. in a machine
- · How can data & A.I. be adapted to a machine

INNOVATION VIA T.O.E. FRAMEWORK

The technology-organization-environment (TOE) framework was created by Tornatzky and Fleisher (1990). It describes factors that influence technology adoption and its likelihood.

TOE describes the process by which a firm adopts and implements technological innovations is influenced by the technological context, the organizational context, and the environmental context.

Data driven & A.I. applications needs to be adapted in multiple domains.



WHAT CAN MACHINE LEARNING DO IN THE INDUSTRY

From technology point of view

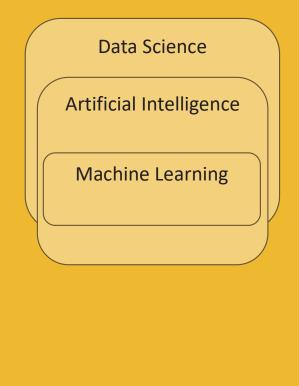
PERRON

Machine Learning is a branch of A.I. and can help us with:

- 1. Predictive maintenance
- 2. Quality control
- 3. Robotics & Automation (adapting to environment)
- 4. Process optimization
- 5. Supply chain optimization
- 6. Energy management
- 7. Safety monitoring
- 8. Data analytics and visualization
- 9. Human machine interaction with Natural Language Processing
- 10. Training and Simulation

WHAT CAN MACHINE LEARNING DO IN THE INDUSTRY

From technology point of view

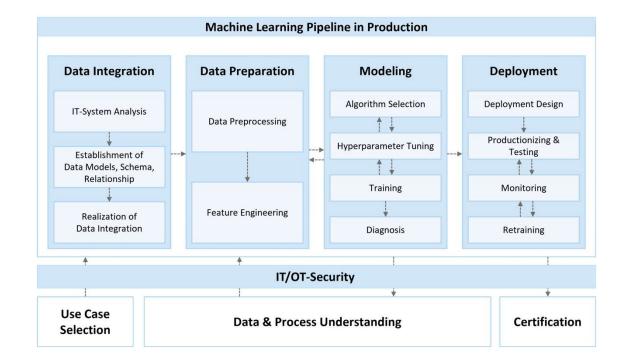


What is Machine Learning?

"Arthur Samuel, a pioneer in the field of artificial intelligence and computer gaming, coined the term "Machine Learning". He defined machine learning as – a "Field of study that gives computers the capability to learn without being explicitly programmed". In a very layman's manner, **Machine Learning(ML) can be explained as automating and improving the learning process of computers based on their experiences without being actually programmed i.e. without any human assistance.**"

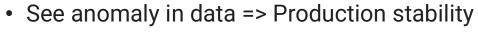
PROCESS TO INTEGRATE M.L. IN A MACHINE

From organizational point of view



WHAT CUSTOMER WANT

From environment point of view

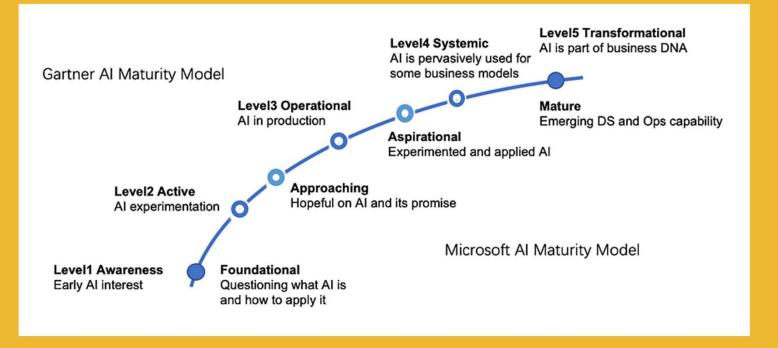


- Predict maintenance => achieve higher uptime, less costs maintenance
- Get to know the voice of the customer Quality control => Higher quality, less rejects/waste
- Lower cost per unit

HOW CAN WE MAKE A MACHINE SMARTER?

HOW CAN WE MAKE YOU SMARTER

==



PRODUCE SMARTER Advance in phases

Phase 1: Initiation

- Business case
- Process mapping to sensors
- Infrastructure data collection
- •(Fault) Data collection
- Manual analysis

Phase 2: Development

Basic ML models (e.g. classification)
Correlation
Condition monitoring

Dashboard analysis

- Phase 3: Intermediate
- •Model tuning
- Simulation testingAutomated Quality Checks
- Initial maintenance scheduling

Phase 4:

- Advanced
- •ML Deployment in Automation
- •Multi sensor analysis
- •Al-Driven Process Adjustment
- •Real-time Predictions

Phase 5:

Expert

- Full Automation
- •Real-time Continuous
- Improvement
- •Adaptive Quality Standards

MATURITY WITH CHALLENGES

Process and Industry Characteristics

- High data and information confidentiality
- Conservative industry with highest demands on reliability
- Increasing need for efficiency improvement and cost reduction
- Lack of IT and data science expertise

variables

- Need for context-aware provision of comprehensible information
- Evolving process dynamics due to e.g., wear and tear
- Highly individualised and specialised real-world processes

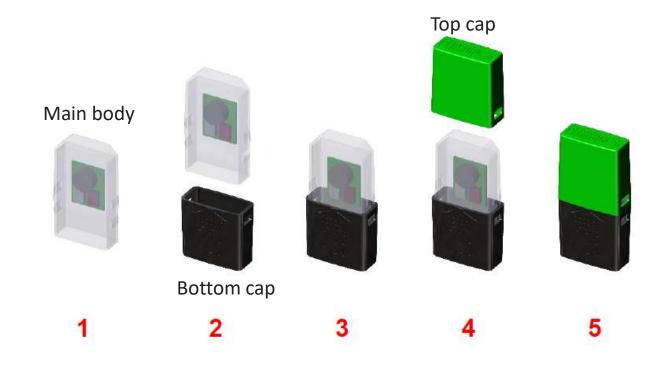
Data Characteristics	ML-Model Characteristics		
 Data tends to be highly imbalanced 	 Non-deterministic behavior lacking functional provability 		
 High complexity and low signal-to-noise-ratio 	 Intransparent model functionality 		
 Inhomogeneous multi-variate and multi-modal data sources 	 Lack of robustness and safety 		
 Poor data quality due to challenges in data integration and 	 Vulnerable against erroneous or manipulated data 		
management	 Susceptible to data drifts (dynamically changing data) 		
 High measuring and labeling efforts for defining target 	 Poor generalizability across processes and tasks 		

High development, implementation and maintenance costs

CASE STUDY: AI DRIVEN QUALITY CHECK

CASE STUDY: AI DRIVEN QUALITY CHECK GENESIS - PRODUCT

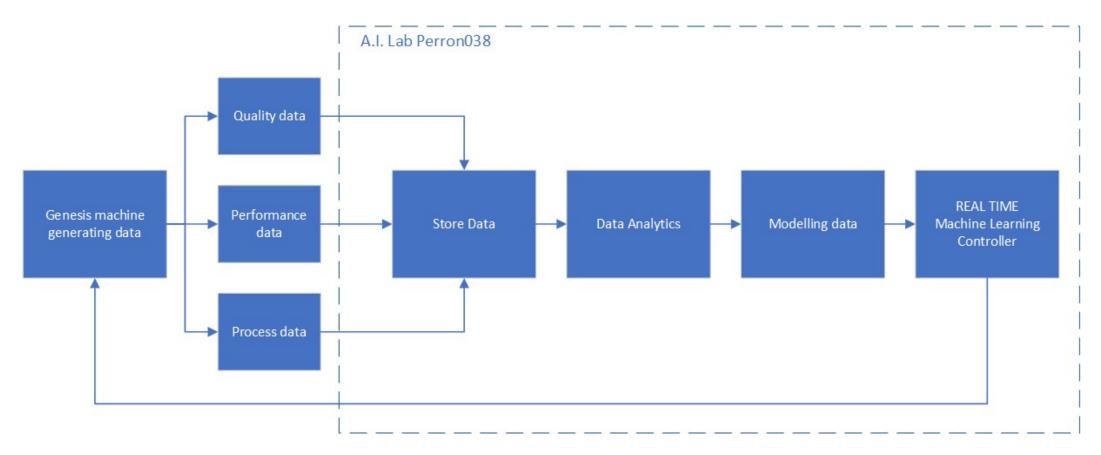
Genesis assemblies a LED-pod as test product to gather data for ML.



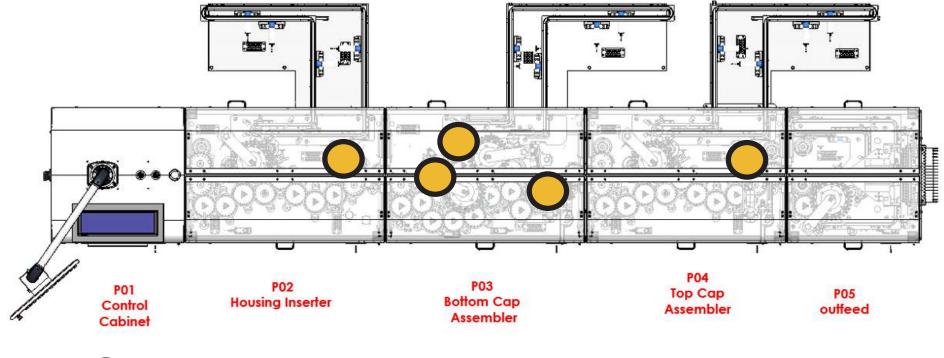
GENESIS — PRODUCT TRANSPORT UIA PUCKS

MODULE	P02	P03	P04	P05
Main				
Sub	B			
	These pucks will wear out			

GENESIS — DATA COLLECTION UIA SENSORS



GENESIS — QUALITY DATA



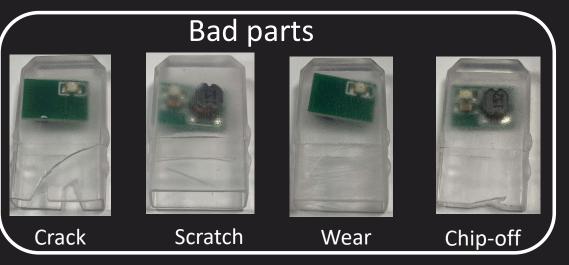
Location of vision sensor

CASE STUDY: AI DRIVEN QUALITY CHECK

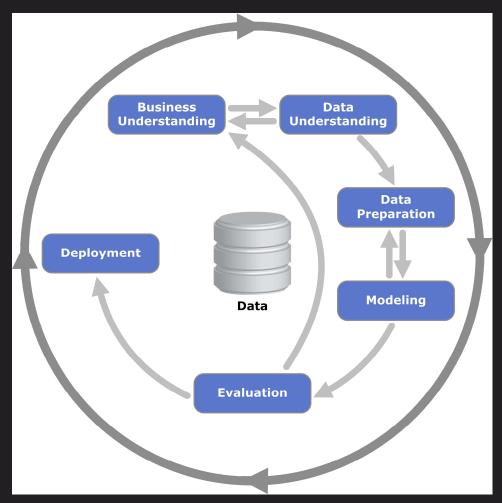
Damaged LED housing

- End of line quality cost
 →wasting good parts due to
 assembly with a bad part
- Possible crash while assembly

 → stops the machine i.e. OEE
 loss + can cause damage to
 machine
- If goes undetected through production, then we get dissatisfied customers



CRISP-DM (CROSS INDUSTRY STANDARD PROCESS FOR DATA MINING)



BUSINESS UNDERSTANDING (IMPACT)

END OF LINE QUALITY COSTS

Without Al model damaged housing /1000 pieces 5 pieces pieces Production speed 100 /min total parts in one shift 48000 pieces end of line rejects in one shift due to 240 pieces damage housing cost of throwing away one good top and € 0.1 bottom cap End of line quality cost/shift £ 24 End of line quality cost per year (24/7 € 25920 production) After implementing 95% accurate AI Model detecting and rejecting damaged LEDs Rejects/shift (95% reduction) 12 pieces End of line quality cost/shift 1.2 € End of line quality cost per year (24/7 1296 £ production) Yearly saving/machine 24624 €

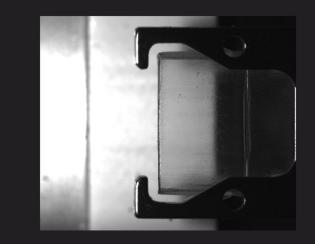
MACHINE AVAILABILITY (OEE)						
Without AI model						
damaged housing /1000 pieces	5	pieces				
probability of crash	1 crash/30 damaged LEDS					
total possible crashes in one shift	8	crashes				
Time to return/crash (removing broken parts and restarting)	2	mins				
Machine unavailability due to crashes	16	mins				
production loss due to machine unavailability	1600	pieces/shi ft				
production loss in a year/machine	1728000	pieces				
After implementing 95% accurate AI Model detecting and rejecting damaged LEDs						
possible crashes in a shift	0.4	crashes				
production loss due to machine unavailability/shift	80	pieces				
production loss in a year/machine	86400	pieces				
Yearly production gain/machine	1641600	pieces				

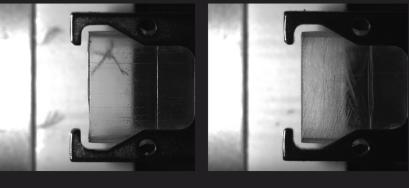
DEDDUU

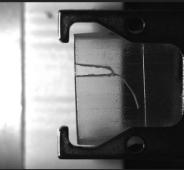
Lower risk by 95% of breaking the machine & Good quality products \rightarrow Happy customer

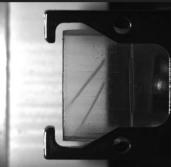
DATA UNDERSTANDING (**FEASIBILITY**)

- DEFECTS: Cracks, Scratches, Wear, Edge chip offs
- Features are Prominent which means
 - Modeling efforts will be low
 - Data Labelling efforts will be low
 - Data volume requirement will be low
- Vision sensor already present checking the presence of part i.e. data is available
- Al inference engine and beckhoff edge computer is already available
- Estimated efforts for model development~5PD
- Estimated efforts for deployment ~5PD
- Total cost of implementation = 10x1200 = 12000€



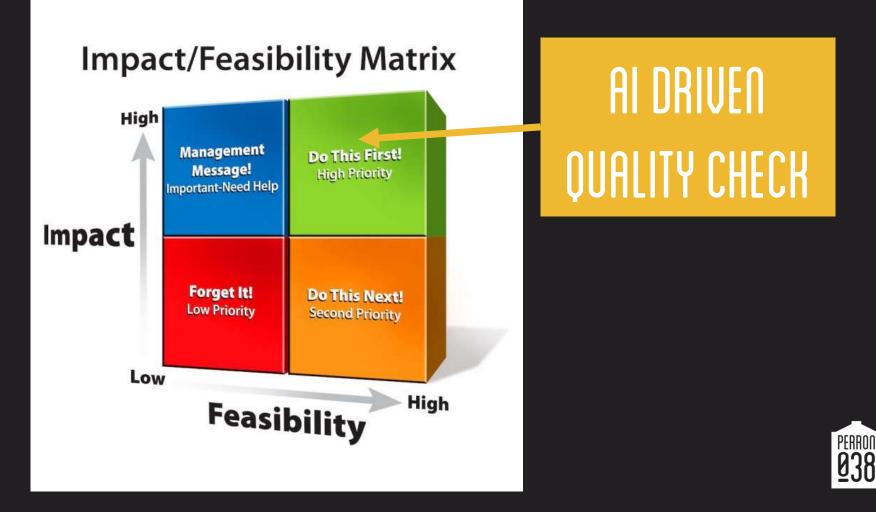


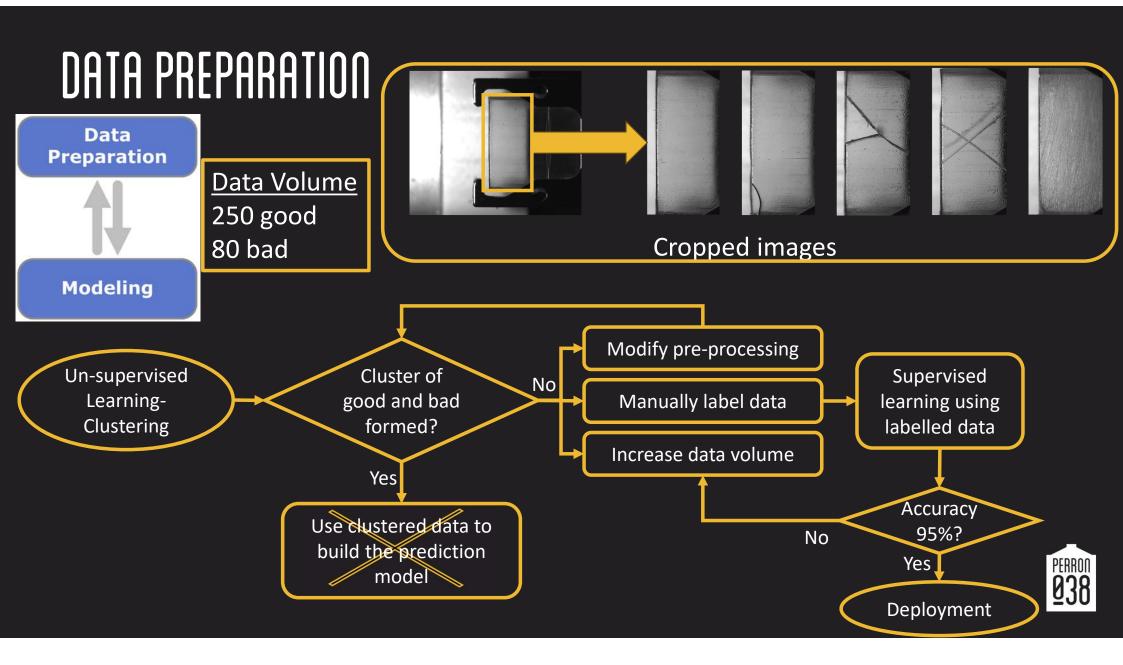




IMPACT US FEASIBILITY

Business Understanding Data Understanding





DATA MODELING

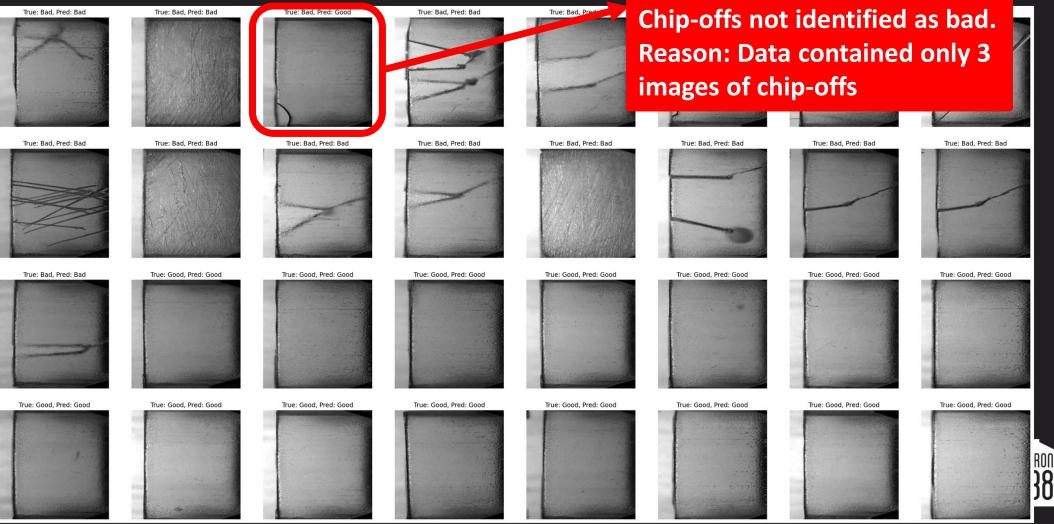
UNSUPERVISED LEARNING -CLUSTERING

- **Models**: AgglomerativeClustering, Kmeans, GaussianMixture
- **OpenCV pre-processing**: Cropping parameters, Edge detection, contrast enhancement
- PCA used for dimensionality reduction
- Filtering techniques tried
 RESULT: None of the methods yielded
 clusters of good and bad products
 REASON: Data volume was low
 especially the bad product data

LEARNING (Iterative) Binary SUPERVISED class data "Good" & "Bad" CNN Training + Accuracy Yes Model Evaluation >95%? No Model Parameters, More data, ... Yes Training + CNN Accuracy Evaluation Model >95%? No Use existing models Yes Training + Transfer Accuracy learning **Evaluation** >95%? PERRO Deployment

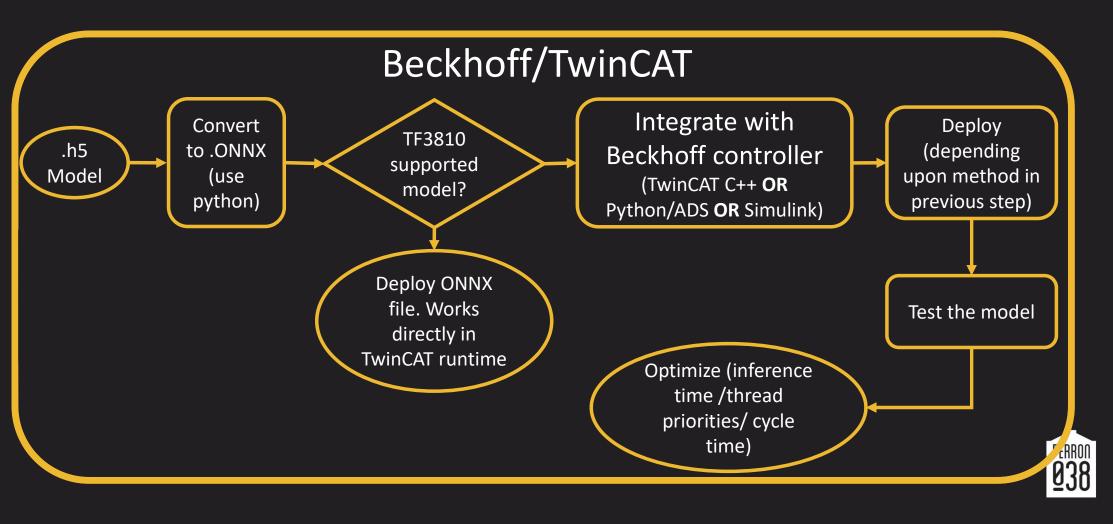
MODEL EVALUATION

Accuracy = 98.4%, 80% training, 20% validation



DEPLOYMENT

Deployment was not done in this use case. However, the workflow for deployment is given below.

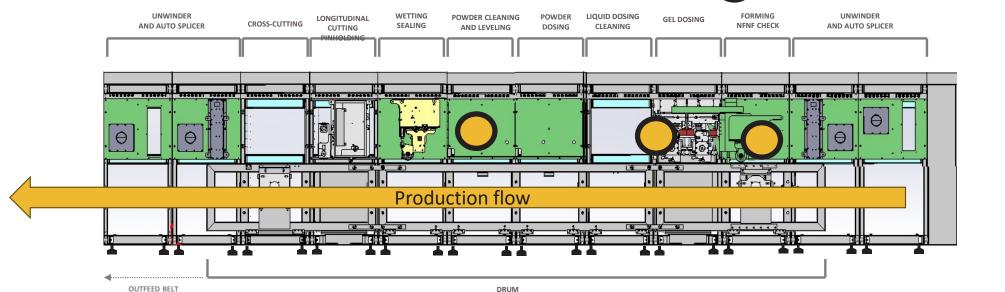


CASE STUDY: PROCESS OPTIMALISATION SALOME

LAUNDRY POD PRODUCTION MACHINE PRODUCT

Concept 4A	[1] White	[2] Blue	[3] Red	Validation
48.82 x 39.65 mm				
14.79 ml / 12.86 ml				
±2 mm inner seal				

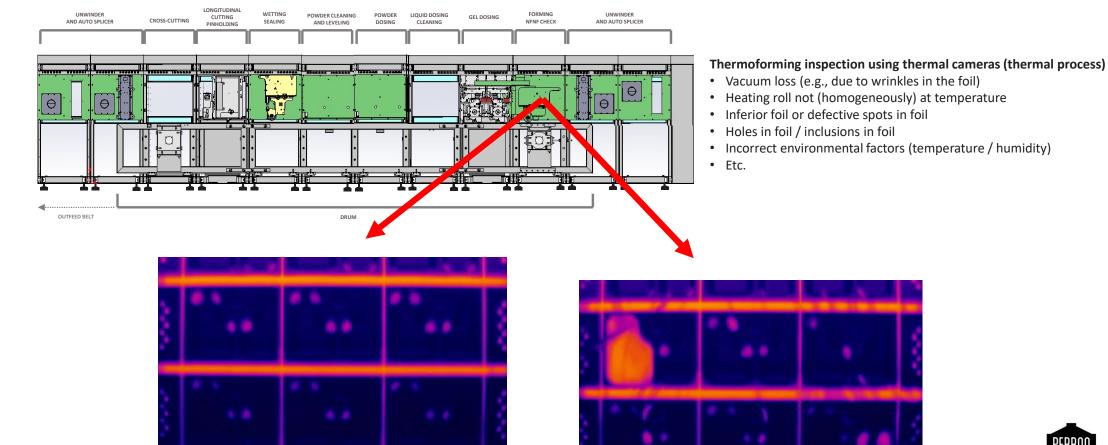
	Powder	Liquid	Liquid	
Depth	13.25 mm	11 mm	7.25 mm	\checkmark
Headspace	1 mm	1.5 mm	1.5 mm	\checkmark
Cavity Volume	7.61 ml	6.28 ml	0.9 ml	~
Fill Volume	6.93 ml	5.28 ml	0.65 ml	\checkmark
Stretch	2.5	2.28	2.28	\checkmark



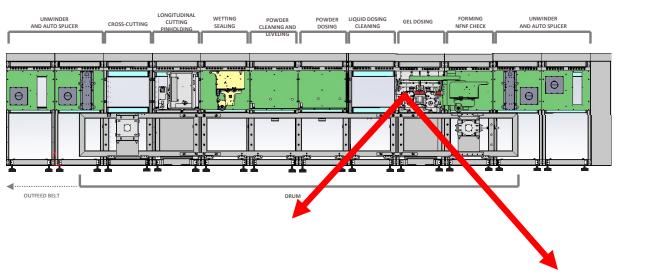
- Drum exists of 200+ beams
- One beam has 36 cavities
- Theoretical output is 2000 p/m

Location of vision sensor

THERMOFORMING INSPECTION USING THERMAL CAMERAS (NO FORM NO FILL) VISION CHECK IN PROCESS



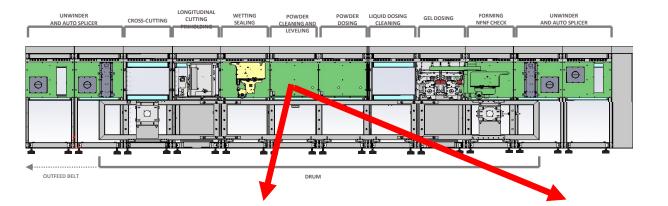
LIQUID DOSING AND SEAL INSPECTION (LIQUID CHECK / SEAL CHECK) VISION CHECK IN PROCESS



Liquid / gel dosing and seal contamination

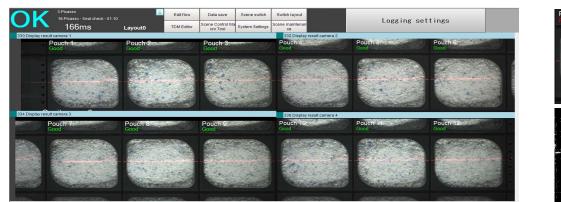
- Stringing of liquid / gel
- Unfilled compartments
- Color deviations
- Liquid / gel droplets outside the filling area
- Overflow / underflow of liquid / gel
- Position measurement of the drum
- Etc.

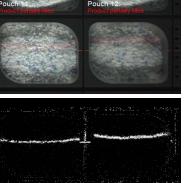
POWDER DOSING AND SEAL AREA INSPECTION (POWDER CHECK / SEAL CHECK) VISION CHECK IN PROCESS

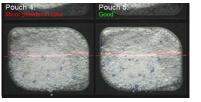


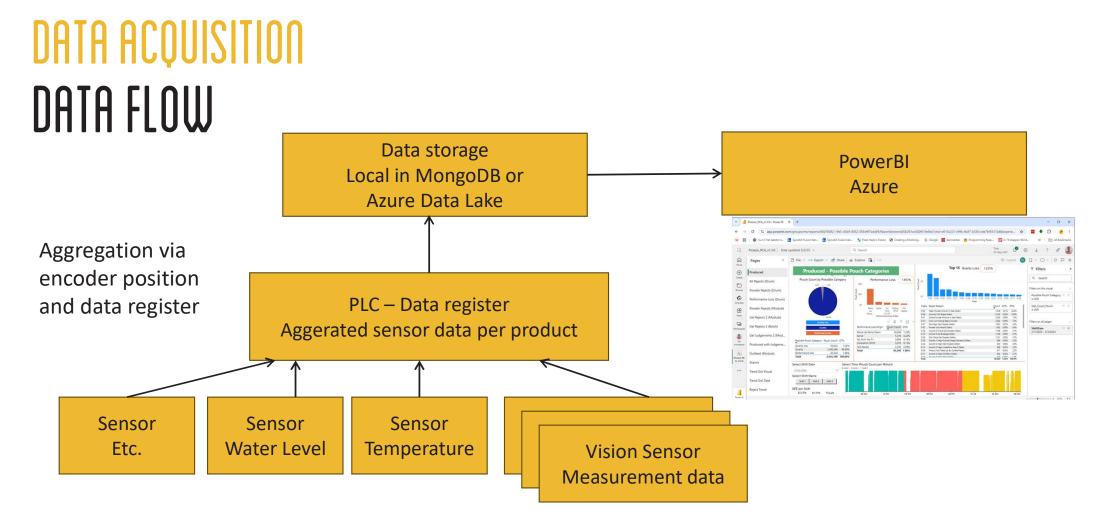
Powder dosing and seal contamination

- Overfill / underfill using 2.5D laser measurement
- Powder contamination on the seal area
- Position measurement of the drum
- Etc.



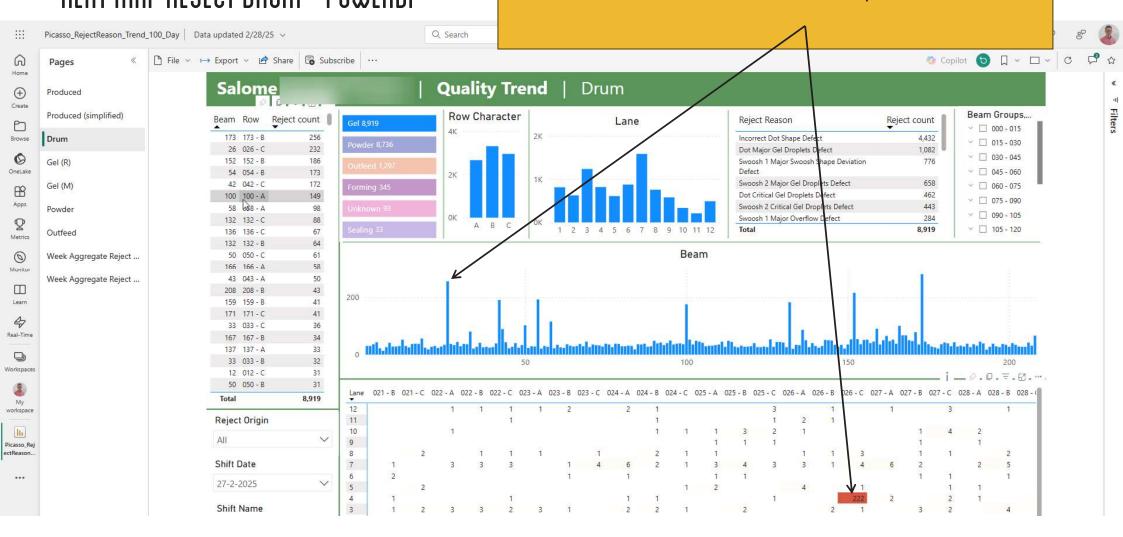






DATA INTERPRETATION HEAT MAP REJECT DRUM - POWERBI

1 Cavity Beam has anomaly on gel defects. Problem related to cavity??



MEASURE CAUITY PROBLEMS WITH A.I.

RESEARCH VISION SENSOR WITH A.I. - CAUITY ERRORS ARE DETERMINED AS FALSE GEL DEFECTS BY CLASSIC VISION

Example pictures of damaged cavities

Damaged cavities will lead to false rejects - Can we early detect these problems?

MEASURE CAUITY PROBLEMS WITH A.I. Research vision sensor with A.I. - Recognize droplets

Example pictures of droplets

Droplets will lead to seal issues

MEASURE CAUITY PROBLEMS WITH A.I. A.I. FUNCTIONALITY INTEGRATED IN VISION SENSOR

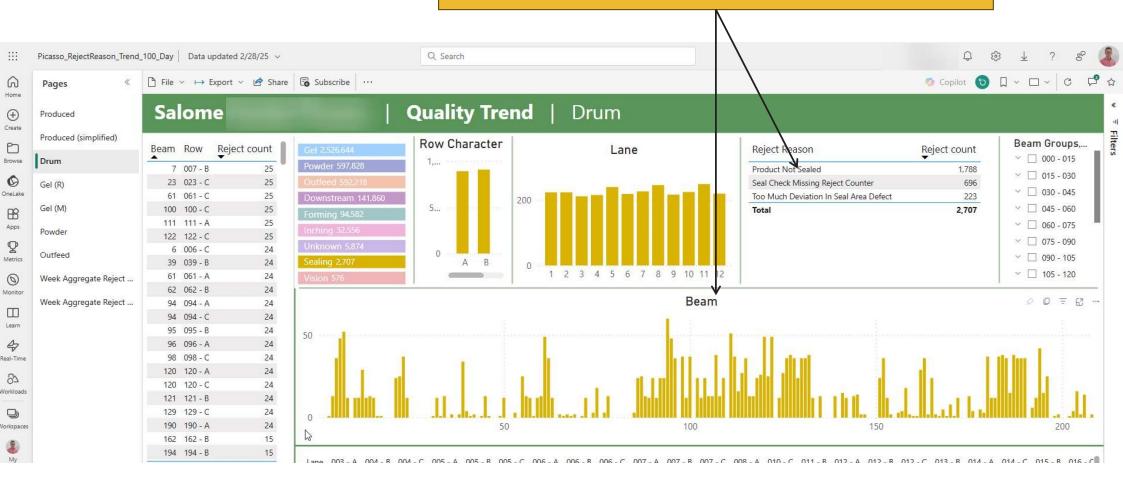
Keep an eye out to your suppliers and their tools to integrate A.I. in your solution

Simplify Inspection Flow	
	Camera Image Input
	Edge Position
	Position Compensation
000	AI Fine Matching
Al Fine Matching realized simple increation	programs by integrating the procedures
AI Fine Matching realizes simple inspection	programs by integrating the procedures.
	Or model can be trained via OPE

Source: <u>https://www.youtube.com/watch?v=I3VayFIB618&t=242s</u>

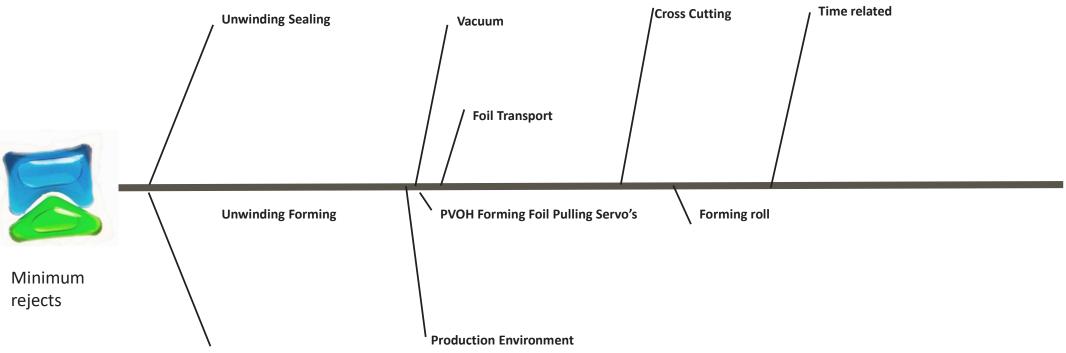
DATA INTERPRETATION HEAT MAP REJECT DRUM - POWERBI

Seal problems are visible over whole drum Problem related other parameters?



MEASURE PUOH FOIL SEALING BEHAVIOR

DETERMINE OPTIMAL SETTINGS == DETERMINE IMPACT



MEASURE PUOH FOIL SEALING BEHAUIOR BRAINS PROJECT WORK IN PROGRESS

"Tembo's use case richt zich op de uitdaging van variërende afdichtingssterkte die leidt tot lekkende pods, waardoor het systeem moet worden stilgelegd en gereinigd. Hun benadering richt zich op twee hoofddoelen: het optimaliseren van parametercontrole om lekken te minimaliseren door het bepalen en meten van beïnvloedende parameters, en het verkleinen van de machinevoetafdruk door het optimaliseren van relevante ontwerpvariabelen en procesparameters."

https://www.tembo.eu/news-plus-stories/het-brains-project

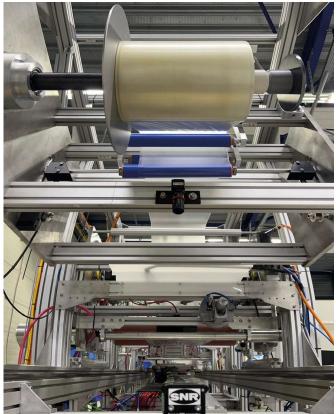
BRAINS wordt mede mogelijk gemaakt door een bijdrage van het European Fund for Regional Development of the European Union met steun van Universiteit Twente

MEASURE PUOH FOIL SEALING BEHAVIOR RANDOM FIELD

With the Random Field model, we try to find the optimal settings to find the optimal process parameters for a successful seal.

- Choose sensors on demonstrator
- Acquire data
- Change parameters
- Find relations between parameters
- Train model

More information: https://linkmagazine.nl/de-kunst-van-werken-met-ai-in-de-industrie/?v=1a13105b7e4e



OTHER A.I. IN PRODUCTION ACTIVITIES FROM PARTNERS OF PERRON038

OR VISIT OUR 'KENNISEVENT — TOEPASSING VAN AI VOOR KWALITEITSCONTROLE ON 21 MARCH 2025' (1)

- AWL Visual Weld quality inspection (2)
- Zuidberg Quality inspection assembly process
- Windesheim Sensor Fusion welding process (in combination with AWL)
- VMI Anomaly inspection rubber (3)
- VMI Regression rubber assembly

(1)Source: <u>https://www.perron038.nl/evenement/kennisevenement-toepassing-van-ai-voor-kwaliteitscontrole/</u>
(2)Source: <u>https://linkmagazine.nl/de-kunst-van-werken-met-ai-in-de-industrie/?v=1a13105b7e4e</u>
(3)Source: https://linkmagazine.nl/met-ai-model-zet-vmi-belangrijke-stap-richting-zelfsturende-machines/?v=1a13105b7e4e

PRODUCE SMARTER

TAKEAWAY

• Using Data to Drive Process Improvements:

- Quality Inspection
- Process Optimization
- Predictive Maintenance
- Data Analytics and Visualization

- Achieving Impact on *OEE with ML and AI Optimization:
 - Enhance Product Quality
 - Stabilize Production Processes
 - Minimize Downtime
 - Perform Root Cause Analysis

*OEE = Overall Equipment Effectiveness

WHAT YOU NEED FOR AI - TAKEAWAY

If you want to automate a process, or answer a complex question using a machine (and this can be any form of AI but also does not need to be), you need to

1. Design the format or shape of an algorithm that is capable of translating that input into a good output

Experience in designing algorithms & automation

2. Find the parameters inside that algorithm that will correctly fit the algorithm onto your problem.

MACHINES THAT MAKES USE OF A.I... TAKEAWAY

- Achieve a higher production stability They see anomalies an can act on it
- Predict maintenance achieve higher uptime, less costs maintenance
- Quality control Higher quality, less rejects/waste

FACTORY NEXT

Discover | Develop | Deliver

CONTACT US FOR MORE

PERRON038 — MAAK DE TOEKOMST

TEMBO — CREATING THE NEXT TOGETHER

SJOERD KEIJSER

Managing Director Perron038 sjoerd.keijser@perron038.nl

FLORIAN VANDEPOEL

A.I. R&D Engineer Tembo florian.vandepoel@tembo.eu

AREND LUTEN R&D Engineer, Software Engineer Tembo arend.luten@tembo.eu

www.perron038.nl